Program Design

ENGR 1181
MATLAB 01
Program Design in Real Life

Complex manufacturing processes require careful logic mapping to determine what actions should be taken and when to produce a product. Often in automotive manufacturing, the control of robots is carefully planned and timed with flowcharts at each stage of the welding process.
Today's Learning Objectives

- After today’s class, students will be able to:
 - Explain the significance of the planning stage in computer problem solving.
 - Create algorithms to plan and develop code.
 - Construct flow charts to plan and develop code.
Why Computer Problem Solving?

- Experience with open-ended problems
- Practice with problem solving
- Learning an important engineering skill
Problem Solving

1. Define
2. Represent
3. Plan
4. Implement
5. Evaluate
Algorithms

- Algorithms are a step by step plan
- Consider every step that’s necessary to complete a task or solve a problem
- Useful tools for problem solving (DR. PIE!)
- They will make programming easier and less time consuming 😊
Algorithm Exercise

- You will work with your classmates to finalize a step-by-step procedure to solve a problem or complete a task.

- Discuss amongst your teammates the various algorithms each person created.

- Select the algorithm that will best complete the task and modify the algorithm if needed.
 - Make sure you consider every small step or detail
 - You will need to make many assumptions
The Task: Have a person fill a bottle with stones.

- Start by listing assumptions
 - A bottle is present
 - Stones are present
 - ...
 - ...
 - ...

Algorithm Example
Algorithm Example

- Trade the finalized algorithm with another team
- Follow their directions EXACTLY
- Document how well it works!
Algorithm Example

- How did things go?
- Anything left out or overlooked?
 - Assumptions
 - Steps
 - Order
Algorithm Example

1. Set bottle upright near stones.
2. If bottle is closed, open it.
3. If bottle is full, go to #7.
4. Select a stone and try to place it in the bottle.
5. If stone is too large, discard stone and go to #3.
6. Place stone in bottle and go to #3.
7. Stop.
Structured Problem Solving

- Top-down, step-wise refinement
 - Start big.
 - Determine subtasks and order
 - Continue until you can’t get any smaller

- Pseudo Code
 - Informal
 - Programming “light”
Structured Problem Solving

- Flowcharts
 - Develop, not document
 - High-level
 - Executable only
 - Coding guideline
 - Specifics not included

- Symbols
- Combine with algorithm
Flowchart Example

- Flowcharts help us visualize our algorithm/program
- DR. PIE: Represent
- It’s good practice to make a flowchart before writing any program. It will save you lots of time!
Flowchart Example

- Friendship Algorithm
Flowchart Example

THE FRIENDSHIP ALGORITHM
DR. SHELDON COOPER, PH.D.
Flowchart Example

1. Start
2. Any Stones left?
 - Yes: Get Stone
 - Does Stone Fit?
 - No: Discard Stone
 - Yes: Put Stone in Bottle
 - Is Bottle Full?
 - No: Go back to Any Stones left?
 - Yes: End
 - No: End
Important Takeaways

- Programs require logic and information
 - Flowcharts map this flow and set the foundation for an efficient program
- Machines don’t know anything unless they are told exactly what’s needed
 - Think like a machine when programming!
 - Ex: Machines don’t know a bottle is upright.
What’s Next?

- Start working on MAT-01 homework.

- Introduction to MATLAB
 - Students will be exposed to the basic set-up and functionality of MATLAB.
 - Complete the pre-class reading and take the Carmen quiz before coming to class.